The problem of information classification of dependent database containing fuzzy data is solved with the fuzzy semantic distance matrix. 并用模糊语义距离矩阵解决了含有模糊数据的相互依赖的数据库的信息分类问题。
This paper researches and discusses the theory of Latent Semantic Index, include the theory of Single Value Decompose and word-document matrix. 本文对潜在语义索引模型进行系统的研究和探讨,包括奇异值分解等相关矩阵理论、词-文档矩阵等;
In this paper, We use the co-occurrence path to explain the relationship between the index words and extract the semantic information in the term-term matrix to expand the query. 本文首先利用传递度来量化索引词与索引词间的关联关系,然后利用索引词与索引词的关系矩阵中存在的语义关系对查询向量进行智能扩展。
The Latent Semantic Image Retrieval Based on Non-negative Matrix Factorization 基于非负矩阵分解的隐含语义图像检索
SUB-SEMANTIC RESOLUTION Analytical matrix of semantic field 语义场分析矩阵
Semantic radius is used to control the scope of related concepts. Similarity matrix of ontology clustering is calculated using an ontology similarity method. An agglomerative hierarchical clustering algorithm is used for ontology clustering. 以基于语义的Ontology相似性方法计算Ontology聚类的相似性矩阵,采用凝聚层次聚类算法实现Ontology聚类。
The method first analysis the latent semantic structure of texts, make single value decomposition on text-matrix, reconstruct the semantic matrix; 首先通过对文本进行潜在语义分析,对文本矩阵进行相应的奇异值分解,重构语义矩阵;
Firstly, Web documents, which are denoted by vector space model reduced document feature set. Then, information filtering and latent semantic indexing are conducted by singular value decomposition of matrix. 首先应用向量空间模型表示Web文档信息,然后通过矩阵的奇异值分解来进行信息过滤和潜在语义索引;
The attribute matrix and assembly location matrix is established. Finally, a component classification method is proposed based on the part name semantic, the attribute matrix, assembly location matrix and additional features simplification. 分析零件的名称语义,并建立属性矩阵和装配位置关系矩阵,提出了一种考虑零件名称语义、属性矩阵、装配位置关系矩阵和辅助特征简化的构件分类方法。
4) An adaptive neuro-fuzzy inference system for must ( strong obligation → weak obligation) is established based on the semantic features, syntactic features and the membership degrees from the feature matrix. 4)基于情态动词must的语义特征、句法特征以及情态语义模糊矩阵计算出的隶属度,建立了must(strongobligation→weakobligation)的自适应神经网络模糊推理系统。
We propose the algorithm to compute the semantic associated value between topics according to the properties matrix, and then add a link between the clusters of semantic association. 3. 提出了根据某两个主题包含的属性之间的语义关联值来计算主题之间语义关联值的算法,然后在有语义关联的聚类之间添加关联链接。
To improve the flexility of process-based Web service composition and aim the abstract service node, we propose the approach about the local automated services composition, a model of Semantic Links Matrix ( SLM) is proposed. 为提高基于流程的服务组合的灵活性,提出基于语义链矩阵(SLM)实现抽象服务节点自动合成方法。
The work of this paper are as follows: 1, proposes an improved methods of generating the semantic matrix, describe the working principle and significance. 本文所作的工作如下:1、提出了一种查询所需要的语义矩阵的改进算法,并对工作原理和意义进行描述。
The two dictionaries solve the problems of ambiguity and synonyms. Then we use the latent semantic analysis and the singular value decomposition of the matrix to get the action semantic keywords. Second, we achieve the sentiment classification. 两个词典解决了中文和英文中多义词和同义词的问题,然后采用潜在语义方法分析文本中的词条,对矩阵进行奇异值分解,得到动作语义关键词。二是对文本进行情感分类。
Based on the idea of semantic kernel method, a semantic matrix is established by using word similarity computation proposed in this thesis, the kernel function is re-defined, and a novel semantic kernel is build at last. 基于语义内核方法的思想,采用本文的词语相似度计算建立语义矩阵,并重新定义内核函数,构建了一个改进的语义内核。
In this method, according to IS-A relationship, attribute relationship between concepts and the feature of asymmetric semantic similarity firstly, sets the corresponding weight, to attain the semantic relation matrix through corresponding matrix operations. 在该方法中,先根据概念之间的IS-A关系、属性关系以及语义相似性存在不对称的特点,设定相应的权值,通过相应的矩阵运算,得到整个本体的语义关系相似矩阵。
The methods extract some semantic information of user behaviors, such as the implicit characteristics of information, context and time information, location information, and use the matrix factorization method to fill in missing data in the matrix of the whole user behavior. 该方法通过提取用户行为中的一些语义信息,如隐含特征信息、上下文时间信息、位置信息等,并采用矩阵分解的方法来补全用户行为矩阵中的缺失数据。
The problem of semantic similarity is transformed into a fuzzy matrix. 在此基础上,本文构建了模糊矩阵,把语义相似度的问题转化为模糊矩阵的问题。
Referring the application of Latent Semantic Analysis in text mining, this paper uses Non-negative Matrix Factorization to mine and present the latent relations among venues in the view of author and venue. 本文结合潜在语义分析在文本挖掘中的应用,利用非负矩阵分解,从作者与期刊的角度挖掘和表示期刊间的潜在关系。
Such a semantic matrix established based on the relationship between word and word, largely eliminated the diversity and randomness which may lead to deviation in the search results. 这样建立起的词与词之间的语义关系矩阵,在很大程度上消除了由于词语语义的多样性和随意性导致的对检索结果产生的偏差。
On the basis of it, the semantic correlation matrix is constructed, and the images are clustered with K-means algorithm based on such matrix. 以此为基础,构建语义关联度矩阵,并基于该矩阵对图像进行K均值聚类。
Then the semantic relationship between annotations is analyzed. The correlations between keyword is picked up, and stored in a matrix which named inter-word correlation matrix. 然后,全面分析标注关键字之间的语义关系,提取了关键字之间的词间相关关系,并利用词间相关性矩阵进行存储。